
POS	Tagging	/	Parsing	I
Taylor	Berg-Kirkpatrick	– CMU

Slides:	Dan	Klein	– UC	Berkeley

Algorithms	for	NLP

Speech	Training

What	Needs	to	be	Learned?

§ Emissions:	P(x	|	phone	class)
§ X	is	MFCC-valued

§ Transitions:	P(state	|	prev state)
§ If	between	words,	this	is	P(word	|	history)
§ If	inside	words,	this	is	P(advance	|	phone	class)
§ (Really	a	hierarchical	model)

s s s

x x x

Estimation from	Aligned	Data
§ What	if	each	time	step	was	labeled	with	its	(context-

dependent	sub)	phone?

§ Can	estimate	P(x|/ae/)	as	empirical	mean	and	(co-)variance	of	
x’s	with	label	/ae/

§ Problem:	Don’t	know	alignment	at	the	frame	and	phone	level

/k/ /ae/ /ae/

x x x

/ae/ /t/

x x

Forced Alignment
§ What	if	the	acoustic	model	P(x|phone)	was	known?

§ …	and	also	the	correct	sequences	of	words	/	phones

§ Can	predict	the	best	alignment	of	frames	to	phones

§ Called	“forced	alignment”

ssssssssppppeeeeeeetshshshshllllaeaeaebbbbb

“speech lab”

Forced	Alignment
§ Create	a	new	state	space	that	forces	the	hidden	variables	to	transition	

through	phones	in	the	(known)	order

§ Still	have	uncertainty	about	durations

§ In	this	HMM,	all	the	parameters	are	known
§ Transitions	determined	by	known	utterance
§ Emissions	assumed	to	be	known
§ Minor	detail:	self-loop	probabilities

§ Just	run	Viterbi	(or	approximations)	to	get	the	best	alignment

/s/ /p/ /ee/ /ch/ /l/ /ae/ /b/

EM	for	Alignment
§ Input:	acoustic	sequences	with	word-level	transcriptions

§ We	don’t	know	either	the	emission	model	or	the	frame	
alignments

§ Expectation	Maximization	(Hard	EM	for	now)
§ Alternating	optimization
§ Impute	completions	for	unlabeled	variables	(here,	the	states	at	each	

time	step)
§ Re-estimate	model	parameters	(here,	Gaussian	means,	variances,	

mixture	ids)
§ Repeat
§ One	of	the	earliest	uses	of	EM!

Soft	EM
§ Hard	EM	uses	the	best	single	completion

§ Here,	single	best	alignment
§ Not	always	representative
§ Certainly	bad	when	your	parameters	are	initialized	and	the	alignments	

are	all	tied
§ Uses	the	count	of	various	configurations	(e.g.	how	many	tokens	of	

/ae/	have	self-loops)

§ What	we’d	really	like	is	to	know	the	fraction	of	paths	that	
include	a	given	completion
§ E.g.	0.32	of	the	paths	align	this	frame	to	/p/,	0.21	align	it	to	/ee/,	etc.
§ Formally	want	to	know	the	expected	count	of	configurations
§ Key	quantity:	P(st |	x)

Computing Marginals

= sum of all paths through s at t
sum of all paths

Forward	Scores

Backward Scores

Total	Scores

Fractional	Counts

§ Computing	fractional	(expected)	counts
§ Compute	forward	/	backward	probabilities
§ For	each	position,	compute	marginal	posteriors
§ Accumulate	expectations
§ Re-estimate	parameters	(e.g.	means,	variances,	self-loop	
probabilities)	from	ratios	of	these	expected	counts

Staged	Training	and	State	Tying

§ Creating	CD	phones:
§ Start	with	monophone,	do	EM	

training
§ Clone	Gaussians	into	triphones
§ Build	decision	tree	and	cluster	

Gaussians
§ Clone	and	train	mixtures	

(GMMs)

§ General	idea:
§ Introduce	complexity	gradually
§ Interleave	constraint	with	

flexibility

Parts	of	Speech

Parts-of-Speech	(English)
§ One	basic	kind	of	linguistic	structure:	syntactic	word	classes

Open class (lexical) words

Closed class (functional)

Nouns Verbs

Proper Common

Auxiliary

Main

Adjectives

Adverbs

Prepositions

Particles

Determiners

Conjunctions

Pronouns

… more

… more

IBM
Italy

cat / cats
snow

see
registered

can
had

yellow

slowly

to with

off up

the some

and or

he its

Numbers

122,312
one

CC conjunction, coordinating and both but either or
CD numeral, cardinal mid-1890 nine-thirty 0.5 one
DT determiner a all an every no that the
EX existential there there
FW foreign word gemeinschaft hund ich jeux
IN preposition or conjunction, subordinating among whether out on by if
JJ adjective or numeral, ordinal third ill-mannered regrettable

JJR adjective, comparative braver cheaper taller
JJS adjective, superlative bravest cheapest tallest
MD modal auxiliary can may might will would
NN noun, common, singular or mass cabbage thermostat investment subhumanity

NNP noun, proper, singular Motown Cougar Yvette Liverpool
NNPS noun, proper, plural Americans Materials States
NNS noun, common, plural undergraduates bric-a-brac averages
POS genitive marker ' 's
PRP pronoun, personal hers himself it we them
PRP$ pronoun, possessive her his mine my our ours their thy your

RB adverb occasionally maddeningly adventurously
RBR adverb, comparative further gloomier heavier less-perfectly
RBS adverb, superlative best biggest nearest worst
RP particle aboard away back by on open through
TO "to" as preposition or infinitive marker to
UH interjection huh howdy uh whammo shucks heck
VB verb, base form ask bring fire see take

VBD verb, past tense pleaded swiped registered saw
VBG verb, present participle or gerund stirring focusing approaching erasing
VBN verb, past participle dilapidated imitated reunifed unsettled
VBP verb, present tense, not 3rd person singular twist appear comprise mold postpone
VBZ verb, present tense, 3rd person singular bases reconstructs marks uses
WDT WH-determiner that what whatever which whichever
WP WH-pronoun that what whatever which who whom
WP$ WH-pronoun, possessive whose
WRB Wh-adverb however whenever where why

Part-of-Speech	Ambiguity
§ Words	can	have	multiple	parts	of	speech

§ Two	basic	sources	of	constraint:
§ Grammatical	environment
§ Identity	of	the	current	word

§ Many	more	possible	features:
§ Suffixes,	capitalization,	name	databases	(gazetteers),	etc…

Fed raises interest rates 0.5 percent
NNP NNS NN NNS CD NN
VBN VBZ VBP VBZ
VBD VB

Why	POS	Tagging?
§ Useful	in	and	of	itself	(more	than	you’d	think)

§ Text-to-speech:	record,	lead
§ Lemmatization:	saw[v]	® see,	saw[n]	® saw
§ Quick-and-dirty	NP-chunk	detection:	grep	{JJ	|	NN}*	{NN	|	NNS}

§ Useful	as	a	pre-processing	step	for	parsing
§ Less	tag	ambiguity	means	fewer	parses
§ However,	some	tag	choices	are	better	decided	by	parsers

DT NN IN NN VBD NNS VBD
The average of interbank offered rates plummeted …

DT NNP NN VBD VBN RP NN NNS
The Georgia branch had taken on loan commitments …

IN

VDN

Part-of-Speech	Tagging

Classic	Solution:	HMMs
§ We	want	a	model	of	sequences	s	and	observations	w

§ Assumptions:
§ States	are	tag	n-grams
§ Usually	a	dedicated	start	and	end	state	/	word
§ Tag/state	sequence	is	generated	by	a	markov model
§ Words	are	chosen	independently,	conditioned	only	on	the	tag/state
§ These	are	totally	broken	assumptions:	why?

s1 s2 sn

w1 w2 wn

s0

States
§ States	encode	what	is	relevant	about	the	past
§ Transitions	P(s|s’)	encode	well-formed	tag	sequences

§ In	a	bigram	tagger,	states	=	tags

§ In	a	trigram	tagger,	states	=	tag	pairs

<¨,¨>

s1 s2 sn

w1 w2 wn

s0

< ¨, t1> < t1, t2> < tn-1, tn>

<¨>

s1 s2 sn

w1 w2 wn

s0

< t1> < t2> < tn>

Estimating	Transitions

§ Use	standard	smoothing	methods	to	estimate	transitions:

§ Can	get	a	lot	fancier	(e.g.	KN	smoothing)	or	use	higher	orders,	but	in	this	
case	it	doesn’t	buy	much

§ One	option:	encode	more	into	the	state,	e.g.	whether	the	previous	word	
was	capitalized	(Brants 00)

§ BIG	IDEA:	The	basic	approach	of	state-splitting	/	refinement	turns	out	to	
be	very	important	in	a	range	of	tasks

)(ˆ)1()|(ˆ),|(ˆ),|(211121221 iiiiiiiii tPttPtttPtttP llll --++= -----

Estimating	Emissions

§ Emissions	are	trickier:
§ Words	we’ve	never	seen	before
§ Words	which	occur	with	tags	we’ve	never	seen	them	with
§ One	option:	break	out	the	fancy	smoothing	(e.g.	KN,	Good-Turing)
§ Issue:	unknown	words	aren’t	black	boxes:

§ Basic	solution:	unknown	words	classes	(affixes	or	shapes)

§ Common	approach:	Estimate	P(t|w)	and	invert
§ [Brants 00]	used	a	suffix	trie as	its	(inverted)	emission	model

343,127.23 11-year Minteria reintroducibly

D+,D+.D+ D+-x+ Xx+ x+-“ly”

Disambiguation	(Inference)
§ Problem:	find	the	most	likely	(Viterbi)	sequence	under	the	model

§ Given	model	parameters,	we	can	score	any	tag	sequence

§ In	principle,	we’re	done	– list	all	possible	tag	sequences,	score	each	one,	
pick	the	best	one	(the	Viterbi	state	sequence)	

Fed raises interest rates 0.5 percent .
NNP VBZ NN NNS CD NN .

P(NNP|<¨,¨>) P(Fed|NNP) P(VBZ|<NNP,¨>) P(raises|VBZ) P(NN|VBZ,NNP)…..

NNP VBZ NN NNS CD NN
NNP NNS NN NNS CD NN
NNP VBZ VB NNS CD NN

logP = -23

logP = -29
logP = -27

<¨,¨> <¨,NNP> <NNP, VBZ> <VBZ, NN> <NN, NNS> <NNS, CD> <CD, NN> <STOP>

Finding	the	Best	Trajectory	
§ Too	many	trajectories	(state	sequences)	to	list
§ Option	1:	Beam	Search

§ A	beam	is	a	set	of	partial	hypotheses
§ Start	with	just	the	single	empty	trajectory
§ At	each	derivation	step:

§ Consider	all	continuations	of	previous	hypotheses
§ Discard	most,	keep	top	k,	or	those	within	a	factor	of	the	best

§ Beam	search	works	ok	in	practice
§ …	but	sometimes	you	want	the	optimal	answer
§ …	and	you	need	optimal	answers	to	validate	your	beam	search
§ …	and	there’s	usually	a	better	option	than	naïve	beams

<>
Fed:NNP

Fed:VBN

Fed:VBD

Fed:NNP raises:NNS

Fed:NNP raises:VBZ
Fed:VBN raises:NNS

Fed:VBN raises:VBZ

The	State	Lattice	/	Trellis

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

START Fed raises interest rates END

The	State	Lattice	/	Trellis

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

START Fed raises interest rates END

The	Viterbi	Algorithm
§ Dynamic	program	for	computing

§ The	score	of	a	best	path	up	to	position	i	ending	in	state	s

§ Also	can	store	a	backtrace	(but	no	one	does)

§ Memoized	solution
§ Iterative	solution

)...,...(max)(1110... 10
--

-

= iisssi wwsssPs
i

d

)'()'|()'|(max)(1'
sswPssPs isi -= dd

î
í
ì >••=<

=
otherwise
sif

s
0

,1
)(0d

)'()'|()'|(maxarg)(1
'

sswPssPs i
s

i -= dy

So	How	Well	Does	It	Work?
§ Choose	the	most	common	tag

§ 90.3%	with	a	bad	unknown	word	model
§ 93.7%	with	a	good	one

§ TnT (Brants,	2000):
§ A	carefully	smoothed	trigram	tagger
§ Suffix	trees	for	emissions
§ 96.7%	on	WSJ	text	(SOTA	is	97+%)

§ Noise	in	the	data
§ Many	errors	in	the	training	and	test	corpora

§ Probably	about	2%	guaranteed	error
from	noise	(on	this	data)

NN NN NN
chief executive officer

JJ NN NN
chief executive officer

JJ JJ NN
chief executive officer

NN JJ NN
chief executive officer

DT NN IN NN VBD NNS VBD
The average of interbank offered rates plummeted …

Overview:	Accuracies
§ Roadmap	of	(known	/	unknown)	accuracies:

§ Most	freq tag:	 ~90%	/	~50%

§ Trigram	HMM:	 ~95%	/	~55%

§ TnT (HMM++):	 96.2%	/	86.0%

§ Maxent P(t|w):	 93.7%	/	82.6%
§ MEMM	tagger:	 96.9%	/	86.9%
§ State-of-the-art:	 97+%	/	89+%
§ Upper	bound:	 ~98%

Most errors
on unknown

words

Common	Errors
§ Common	errors	[from	Toutanova	&	Manning	00]

NN/JJ NN

official knowledge

VBD RP/IN DT NN

made up the story

RB VBD/VBN NNS

recently sold shares

Richer	Features

Better	Features
§ Can	do	surprisingly	well	just	looking	at	a	word	by	itself:

§ Word the:	the	® DT
§ Lowercased	word Importantly:	importantly	® RB
§ Prefixes unfathomable:	un-® JJ
§ Suffixes Surprisingly:	-ly	® RB
§ Capitalization Meridian:	CAP	® NNP
§ Word	shapes 35-year:	d-x	® JJ

§ Then	build	a	maxent	(or	whatever)	model	to	predict	tag
§ Maxent	P(t|w):	 93.7%	/	82.6% s3

w3

Why	Linear	Context	is	Useful
§ Lots	of	rich	local	information!

§ We	could	fix	this	with	a	feature	that	looked	at	the	next	word

§ We	could	fix	this	by	linking	capitalized	words	to	their	lowercase	versions

§ Solution:	discriminative	sequence	models	(MEMMs,	CRFs)

§ Reality	check:
§ Taggers	are	already	pretty	good	on	newswire	text…
§ What	the	world	needs	is	taggers	that	work	on	other	text!

PRP VBD IN RB IN PRP VBD .
They left as soon as he arrived .

NNP NNS VBD VBN .
Intrinsic flaws remained undetected .

RB

JJ

Sequence-Free	Tagging?

§ What	about	looking	at	a	word	and	its	
environment,	but	no	sequence	information?

§ Add	in	previous	/	next	word the	__
§ Previous	/	next	word	shapes X	__	X
§ Occurrence	pattern	features [X:	x	X	occurs]
§ Crude	entity	detection __	…..	(Inc.|Co.)
§ Phrasal	verb	in	sentence? put	……	__
§ Conjunctions	of	these	things

§ All	features	except	sequence:	96.6%	/	86.8%
§ Uses	lots	of	features:	>	200K
§ Why	isn’t	this	the	standard	approach?

t3

w3 w4w2

Named	Entity	Recognition
§ Other	sequence	tasks	use	similar	models

§ Example:	name	entity	recognition	(NER)

Prev Cur Next
State Other ??? ???
Word at Grace Road
Tag IN NNP NNP
Sig x Xx Xx

Local Context

Tim Boon has signed a contract extension with Leicestershire which will keep him at Grace Road .

PER PER O O O O O O ORG O O O O O LOC LOC O

MEMM	Taggers
§ Idea:	left-to-right	local	decisions,	condition	on	previous	tags	

and	also	entire	input

§ Train	up	P(ti|w,ti-1,ti-2)	as	a	normal	maxent model,	then	use	to	score	
sequences

§ This	is	referred	to	as	an	MEMM	tagger	[Ratnaparkhi 96]
§ Beam	search	effective!		(Why?)
§ What	about	beam	size	1?

§ Subtle	issues	with	local	normalization	(cf.	Lafferty	et	al	01)

NER	Features

Feature Type Feature PERS LOC
Previous word at -0.73 0.94
Current word Grace 0.03 0.00
Beginning bigram <G 0.45 -0.04
Current POS tag NNP 0.47 0.45
Prev and cur tags IN NNP -0.10 0.14
Previous state Other -0.70 -0.92
Current signature Xx 0.80 0.46
Prev state, cur sig O-Xx 0.68 0.37
Prev-cur-next sig x-Xx-Xx -0.69 0.37
P. state - p-cur sig O-x-Xx -0.20 0.82
…
Total: -0.58 2.68

Prev Cur Next
State Other ??? ???
Word at Grace Road
Tag IN NNP NNP
Sig x Xx Xx

Local Context

Feature Weights
Because of regularization
term, the more common
prefixes have larger
weights even though
entire-word features are
more specific.

Decoding
§ Decoding	MEMM	taggers:

§ Just	like	decoding	HMMs,	different	local	scores
§ Viterbi,	beam	search,	posterior	decoding

§ Viterbi	algorithm	(HMMs):

§ Viterbi	algorithm	(MEMMs):

§ General:

Conditional	Random	Fields	
(and	Friends)

Maximum	Entropy	II

§ Remember:	maximum	entropy	objective

§ Problem:	lots	of	features	allow	perfect	fit	to	training	set
§ Regularization	(compare	to	smoothing)

Derivative	for	Maximum	Entropy

Big weights are bad

Total count of feature n
in correct candidates

Expected count of
feature n in predicted

candidates

Perceptron	Review

Perceptron
§ Linear	model:

§ …	that	decompose	along	the	sequence

§ …	allow	us	to	predict	with	the	Viterbi	algorithm

§ …	which	means	we	can	train	with	the	perceptron	algorithm	
(or	related	updates,	like	MIRA)

[Collins 01]

Conditional	Random	Fields
§ Make	a	maxent	model	over	entire	taggings

§ MEMM

§ CRF

CRFs
§ Like	any	maxent model,	derivative	is:

§ So	all	we	need	is	to	be	able	to	compute	the	expectation	of	each	feature	
(for	example	the	number	of	times	the	label	pair	DT-NN	occurs,	or	the	
number	of	times	NN-interest	occurs)	under	the	model	distribution

§ Critical	quantity:	counts	of	posterior	marginals:		

Computing	Posterior	Marginals
§ How	many	(expected)	times	is	word	w	tagged	with	s?

§ How	to	compute	that	marginal?
^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

START Fed raises interest rates END

Global	Discriminative	Taggers

§ Newer,	higher-powered	discriminative	sequence	models
§ CRFs	(also	perceptrons,	M3Ns)
§ Do	not	decompose	training	into	independent	local	regions
§ Can	be	deathly	slow	to	train	– require	repeated	inference	on	training	

set
§ Differences	tend	not	to	be	too	important	for	POS	tagging
§ Differences	more	substantial	on	other	sequence	tasks
§ However:	one	issue	worth	knowing	about	in	local	models

§ “Label	bias”	and	other	explaining	away	effects
§ MEMM	taggers’	local	scores	can	be	near	one	without	having	both	

good	“transitions”	and	“emissions”
§ This	means	that	often	evidence	doesn’t	flow	properly
§ Why	isn’t	this	a	big	deal	for	POS	tagging?
§ Also:	in	decoding,	condition	on	predicted,	not	gold,	histories

Transformation-Based	Learning

§ [Brill	95]	presents	a	transformation-based	tagger
§ Label	the	training	set	with	most	frequent	tags

DT			MD		VBD			VBD		.
The		can		was		rusted	.

§ Add	transformation	rules	which	reduce	training	mistakes

§ MD	® NN	:	DT	__
§ VBD	® VBN	:	VBD	__	.

§ Stop	when	no	transformations	do	sufficient	good
§ Does	this	remind	anyone	of	anything?

§ Probably	the	most	widely	used	tagger	(esp.	outside	NLP)
§ …	but	definitely	not	the	most	accurate:	96.6%	/	82.0	%

Learned	Transformations
§ What	gets	learned?	[from	Brill	95]

EngCG	Tagger

§ English	constraint	grammar	tagger
§ [Tapanainen	and	Voutilainen	94]
§ Something	else	you	should	know	about
§ Hand-written	and	knowledge	driven
§ “Don’t	guess	if	you	know”	(general	point	

about	modeling	more	structure!)
§ Tag	set	doesn’t	make	all	of	the	hard	

distinctions	as	the	standard	tag	set	(e.g.	
JJ/NN)

§ They	get	stellar	accuracies:	99%	on	their
tag	set

§ Linguistic	representation	matters…
§ …	but	it’s	easier	to	win	when	you	make	up	

the	rules

Domain	Effects
§ Accuracies	degrade	outside	of	domain

§ Up	to	triple	error	rate
§ Usually	make	the	most	errors	on	the	things	you	care	about	
in	the	domain	(e.g.	protein	names)

§ Open	questions
§ How	to	effectively	exploit	unlabeled	data	from	a	new	
domain	(what	could	we	gain?)

§ How	to	best	incorporate	domain	lexica	in	a	principled	way	
(e.g.	UMLS	specialist	lexicon,	ontologies)

Unsupervised	Tagging

Unsupervised	Tagging?
§ AKA	part-of-speech	induction
§ Task:

§ Raw	sentences	in
§ Tagged	sentences	out

§ Obvious	thing	to	do:
§ Start	with	a	(mostly)	uniform	HMM
§ Run	EM
§ Inspect	results

EM	for	HMMs:	Process
§ Alternate	between	recomputing	distributions	over	hidden	variables	(the	

tags)	and	reestimating	parameters
§ Crucial	step:	we	want	to	tally	up	how	many	(fractional)	counts	of	each	

kind	of	transition	and	emission	we	have	under	current	params:

§ Same	quantities	we	needed	to	train	a	CRF!

EM	for	HMMs:	Quantities
§ Total	path	values	(correspond	to	probabilities	here):

The	State	Lattice	/	Trellis

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

START Fed raises interest rates END

EM	for	HMMs:	Process

§ From	these	quantities,	can	compute	expected	transitions:

§ And	emissions:

Merialdo:	Setup
§ Some	(discouraging)	experiments	[Merialdo	94]

§ Setup:
§ You	know	the	set	of	allowable	tags	for	each	word
§ Fix	k	training	examples	to	their	true	labels

§ Learn	P(w|t)	on	these	examples
§ Learn	P(t|t-1,t-2)	on	these	examples

§ On	n	examples,	re-estimate	with	EM

§ Note:	we	know	allowed	tags	but	not	frequencies

Merialdo:	Results

Distributional	Clustering

president the __ of
president the __ said
governor the __ of
governor the __ appointed
said sources __ ¨
said president __ that
reported sources __ ¨

president
governor

said
reported

the
a

¨ the president said that the downturn was over ¨

[Finch and Chater 92, Shuetze 93, many others]

Distributional	Clustering
§ Three	main	variants	on	the	same	idea:

§ Pairwise	similarities	and	heuristic	clustering
§ E.g.	[Finch	and	Chater	92]
§ Produces	dendrograms

§ Vector	space	methods
§ E.g.	[Shuetze	93]
§ Models	of	ambiguity

§ Probabilistic	methods
§ Various	formulations,	e.g.	[Lee	and	Pereira	99]

Nearest	Neighbors

Dendrograms																							_

Dendrograms																							_

Vector	Space	Version
§ [Shuetze	93]	clusters	words	as	points	in	Rn

§ Vectors	too	sparse,	use	SVD	to	reduce

Mw

context counts

U
S V

w

context counts

Cluster these 50-200 dim vectors instead.

Õ -=
i

iiii ccPcwPCSP)|()|(),(1

Õ +-=
i

iiiiii cwwPcwPcPCSP)|,()|()(),(11

A	Probabilistic	Version?

¨ the president said that the downturn was over ¨

c1 c2 c6c5 c7c3 c4 c8

¨ the president said that the downturn was over ¨

c1 c2 c6c5 c7c3 c4 c8

What	Else?
§ Various	newer	ideas:

§ Context	distributional	clustering	[Clark	00]
§ Morphology-driven	models	[Clark	03]
§ Contrastive	estimation	[Smith	and	Eisner	05]
§ Feature-rich	induction	[Haghighi	and	Klein	06]

§ Also:
§ What	about	ambiguous	words?
§ Using	wider	context	signatures	has	been	used	for	learning	
synonyms	(what’s	wrong	with	this	approach?)

§ Can	extend	these	ideas	for	grammar	induction	(later)

Computing Marginals

= sum of all paths through s at t
sum of all paths

Forward	Scores

Backward Scores

Total	Scores

Syntax

Parse	Trees

The move followed a round of similar increases by other lenders,
reflecting a continuing decline in that market

Phrase	Structure	Parsing
§ Phrase	structure	parsing	

organizes	syntax	into	
constituents	or	brackets

§ In	general,	this	involves	
nested	trees

§ Linguists	can,	and	do,	
argue	about	details

§ Lots	of	ambiguity

§ Not	the	only	kind	of	
syntax…

new art critics write reviews with computers

PP

NP
NP

N’

NP

VP

S

Constituency	Tests

§ How	do	we	know	what	nodes	go	in	the	tree?

§ Classic	constituency	tests:
§ Substitution	by	proform
§ Question	answers
§ Semantic	gounds

§ Coherence
§ Reference
§ Idioms

§ Dislocation
§ Conjunction

§ Cross-linguistic	arguments,	too

Conflicting	Tests
§ Constituency	isn’t	always	clear

§ Units	of	transfer:
§ think	about	~	penser à
§ talk	about	~	hablar de

§ Phonological	reduction:
§ I	will	go	® I’ll	go
§ I	want	to	go	® I	wanna go
§ a	le	centre® au	centre

§ Coordination
§ He	went	to	and	came	from	the	store.

La vélocité des ondes sismiques

Classical	NLP:	Parsing

§ Write	symbolic	or	logical	rules:

§ Use	deduction	systems	to	prove	parses	from	words
§ Minimal	grammar	on	“Fed	raises”	sentence:	36	parses
§ Simple	10-rule	grammar:	592	parses
§ Real-size	grammar:	many	millions	of	parses

§ This	scaled	very	badly,	didn’t	yield	broad-coverage	tools

Grammar (CFG) Lexicon

ROOT ® S

S ® NP VP

NP ® DT NN

NP ® NN NNS

NN ® interest

NNS ® raises

VBP ® interest

VBZ ® raises

…

NP ® NP PP

VP ® VBP NP

VP ® VBP NP PP

PP ® IN NP

Ambiguities

Ambiguities:	PP	Attachment

Attachments

§ I	cleaned	the	dishes	from	dinner

§ I	cleaned	the	dishes	with	detergent

§ I	cleaned	the	dishes	in	my	pajamas

§ I	cleaned	the	dishes	in	the	sink

Syntactic	Ambiguities	I

§ Prepositional	phrases:
They	cooked	the	beans	in	the	pot	on	the	stove	with	handles.

§ Particle	vs.	preposition:
The	puppy	tore	up	the	staircase.

§ Complement	structures
The	tourists	objected	to	the	guide	that	they	couldn’t	hear.
She	knows	you	like	the	back	of	her	hand.

§ Gerund	vs.	participial	adjective
Visiting	relatives	can	be	boring.
Changing	schedules	frequently	confused	passengers.

Syntactic	Ambiguities	II
§ Modifier	scope	within	NPs

impractical	design	requirements
plastic	cup	holder

§ Multiple	gap	constructions
The	chicken	is	ready	to	eat.
The	contractors	are	rich	enough	to	sue.

§ Coordination	scope:
Small	rats	and	mice	can	squeeze	into	holes	or	cracks	in	the	
wall.

Dark	Ambiguities

§ Dark	ambiguities: most	analyses	are	shockingly	bad	
(meaning,	they	don’t	have	an	interpretation	you	can	get	
your	mind	around)

§ Unknown	words	and	new	usages
§ Solution:	We	need	mechanisms	to	focus	attention	on	the	
best	ones,	probabilistic	techniques	do	this

This	analysis	corresponds	to	
the	correct	parse	of	

“This	will	panic	buyers	!	”

Ambiguities	as	Trees

PCFGs

Probabilistic	Context-Free	Grammars

§ A	context-free	grammar	is	a	tuple	<N,	T,	S,	R>
§ N :	the	set	of	non-terminals

§ Phrasal	categories:	S,	NP,	VP,	ADJP,	etc.
§ Parts-of-speech	(pre-terminals):	NN,	JJ,	DT,	VB

§ T :	the	set	of	terminals	(the	words)
§ S :	the	start	symbol

§ Often	written	as	ROOT	or	TOP
§ Not	usually	the	sentence	non-terminal	S

§ R :	the	set	of	rules
§ Of	the	form	X	® Y1 Y2 …	Yk,	with	X,	Yi Î N
§ Examples:	S	® NP	VP,			VP	® VP	CC	VP
§ Also	called	rewrites,	productions,	or	local	trees

§ A	PCFG	adds:
§ A	top-down	production	probability	per	rule	P(Y1 Y2 …	Yk	|	X)

Treebank	Sentences

Treebank	Grammars

§ Need	a	PCFG	for	broad	coverage	parsing.
§ Can	take	a	grammar	right	off	the	trees	(doesn’t	work	well):

§ Better	results	by	enriching	the	grammar	(e.g.,	lexicalization).
§ Can	also	get	state-of-the-art	parsers	without	lexicalization.

ROOT ® S 1

S ® NP VP . 1

NP ® PRP 1

VP ® VBD ADJP 1

…..

PLURAL NOUN

NOUNDET
DET

ADJ

NOUN

NP NP

CONJ

NP PP

Treebank	Grammar	Scale

§ Treebank	grammars	can	be	enormous
§ As	FSAs,	the	raw	grammar	has	~10K	states,	excluding	the	lexicon
§ Better	parsers	usually	make	the	grammars	larger,	not	smaller

NP

Chomsky	Normal	Form

§ Chomsky	normal	form:
§ All	rules	of	the	form	X	® Y	Z	or	X	® w
§ In	principle,	this	is	no	limitation	on	the	space	of	(P)CFGs

§ N-ary	rules	introduce	new	non-terminals

§ Unaries	/	empties	are	“promoted”
§ In	practice	it’s	kind	of	a	pain:

§ Reconstructing	n-aries	is	easy
§ Reconstructing	unaries	is	trickier
§ The	straightforward	transformations	don’t	preserve	tree	scores

§ Makes	parsing	algorithms	simpler!

VP

[VP ® VBD NP •]

VBD NP PP PP

[VP ® VBD NP PP •]

VBD NP PP PP

VP

CKY	Parsing

A	Recursive	Parser

§ Will	this	parser	work?
§ Why	or	why	not?
§ Memory	requirements?

bestScore(X,i,j,s)
if (j = i+1)

return tagScore(X,s[i])
else

return max score(X->YZ) *
bestScore(Y,i,k) *
bestScore(Z,k,j)

A	Memoized	Parser
§ One	small	change:

bestScore(X,i,j,s)
if (scores[X][i][j] == null)

if (j = i+1)
score = tagScore(X,s[i])

else
score = max score(X->YZ) *

bestScore(Y,i,k) *
bestScore(Z,k,j)

scores[X][i][j] = score
return scores[X][i][j]

§ Can	also	organize	things	bottom-up

A	Bottom-Up	Parser	(CKY)

bestScore(s)
for (i : [0,n-1])
for (X : tags[s[i]])
score[X][i][i+1] =

tagScore(X,s[i])
for (diff : [2,n])
for (i : [0,n-diff])
j = i + diff
for (X->YZ : rule)
for (k : [i+1, j-1])
score[X][i][j] = max score[X][i][j],

score(X->YZ) *
score[Y][i][k] *
score[Z][k][j]

Y Z

X

i k j

Unary	Rules
§ Unary	rules?

bestScore(X,i,j,s)
if (j = i+1)

return tagScore(X,s[i])
else

return max max score(X->YZ) *
bestScore(Y,i,k) *
bestScore(Z,k,j)

max score(X->Y) *
bestScore(Y,i,j)

CNF	+	Unary	Closure

§ We	need	unaries	to	be	non-cyclic
§ Can	address	by	pre-calculating	the	unary	closure
§ Rather	than	having	zero	or	more	unaries,	always	have	
exactly	one

§ Alternate	unary	and	binary	layers
§ Reconstruct	unary	chains	afterwards

NP

DT NN

VP

VBD
NP

DT NN

VP

VBD NP

VP

S

SBAR

VP

SBAR

Alternating	Layers

bestScoreU(X,i,j,s)
if (j = i+1)

return tagScore(X,s[i])
else

return max max score(X->Y) *
bestScoreB(Y,i,j)

bestScoreB(X,i,j,s)
return max max score(X->YZ) *

bestScoreU(Y,i,k) *
bestScoreU(Z,k,j)

Analysis

Memory
§ How	much	memory	does	this	require?

§ Have	to	store	the	score	cache
§ Cache	size:	|symbols|*n2 doubles
§ For	the	plain	treebank	grammar:

§ X	~	20K,	n	=	40,	double	~	8	bytes	=	~	256MB
§ Big,	but	workable.

§ Pruning:	Beams
§ score[X][i][j]	can	get	too	large	(when?)
§ Can	keep	beams	(truncated	maps	score[i][j])	which	only	store	the	best	few	

scores	for	the	span	[i,j]

§ Pruning:	Coarse-to-Fine
§ Use	a	smaller	grammar	to	rule	out	most	X[i,j]
§ Much	more	on	this	later…

Time:	Theory
§ How	much	time	will	it	take	to	parse?

§ For	each	diff	(<=	n)
§ For	each	i (<=	n)

§ For	each	rule	X	® Y	Z	
§ For	each	split	point	k
Do	constant	work

§ Total	time:	|rules|*n3

§ Something	like	5	sec	for	an	unoptimized parse	of	a	
20-word	sentence

Y Z

X

i k j

Time:	Practice

§ Parsing	with	the	vanilla	treebank grammar:

§ Why’s	it	worse	in	practice?
§ Longer	sentences	“unlock”	more	of	the	grammar
§ All	kinds	of	systems	issues	don’t	scale

~ 20K Rules

(not an
optimized
parser!)

Observed
exponent:

3.6

Same-Span	Reachability

ADJP ADVP
FRAG INTJ NP
PP PRN QP S
SBAR UCP VP

WHNP

TOP

LST

CONJP

WHADJP

WHADVP

WHPP

NX

NAC

SBARQ

SINV

RRCSQ X

PRT

Rule	State	Reachability

§ Many	states	are	more	likely	to	match	larger	spans!

Example: NP CC •

NP CC

0 nn-1
1 Alignment

Example: NP CC NP •

NP CC

0 nn-k-1
n AlignmentsNP

n-k

Efficient	CKY

§ Lots	of	tricks	to	make	CKY	efficient
§ Some	of	them	are	little	engineering	details:

§ E.g.,	first	choose	k,	then	enumerate	through	the	Y:[i,k]	which	are	
non-zero,	then	loop	through	rules	by	left	child.

§ Optimal	layout	of	the	dynamic	program	depends	on	grammar,	
input,	even	system	details.

§ Another	kind	is	more	important	(and	interesting):
§ Many	X[i,j]	can	be	suppressed	on	the	basis	of	the	input	string
§ We’ll	see	this	next	class	as	figures-of-merit,	A*	heuristics,	coarse-
to-fine,	etc

Agenda-Based	Parsing

Agenda-Based	Parsing
§ Agenda-based	parsing	is	like	graph	search	(but	over	a	

hypergraph)
§ Concepts:

§ Numbering:	we	number	fenceposts	between	words
§ “Edges”	or	items:	spans	with	labels,	e.g.	PP[3,5],	represent	the	sets	of	

trees	over	those	words	rooted	at	that	label	(cf.	search	states)
§ A	chart:	records	edges	we’ve	expanded	(cf.	closed	set)
§ An	agenda:	a	queue	which	holds	edges	(cf.	a	fringe	or	open	set)

0 1 2 3 4 5
critics write reviews with computers

PP

Word	Items
§ Building	an	item	for	the	first	time	is	called	discovery.		Items	go	

into	the	agenda	on	discovery.
§ To	initialize,	we	discover	all	word	items	(with	score	1.0).

critics write reviews with computers

critics[0,1], write[1,2], reviews[2,3], with[3,4], computers[4,5]

0 1 2 3 4 5

AGENDA

CHART [EMPTY]

Unary	Projection
§ When	we	pop	a	word	item,	the	lexicon	tells	us	the	tag	item	

successors	(and	scores)	which	go	on	the	agenda

critics write reviews with computers

0 1 2 3 4 5
critics write reviews with computers

critics[0,1] write[1,2]
NNS[0,1]

reviews[2,3] with[3,4] computers[4,5]
VBP[1,2] NNS[2,3] IN[3,4] NNS[4,5]

Item	Successors
§ When	we	pop	items	off	of	the	agenda:

§ Graph	successors:	unary	projections	(NNS	® critics,	NP	® NNS)

§ Hypergraph successors:	combine	with	items	already	in	our	chart

§ Enqueue /	promote	resulting	items	(if	not	in	chart	already)
§ Record	backtraces as	appropriate
§ Stick	the	popped	edge	in	the	chart	(closed	set)

§ Queries	a	chart	must	support:
§ Is	edge	X[i,j]	in	the	chart?		(What	score?)
§ What	edges	with	label	Y	end	at	position	j?
§ What	edges	with	label	Z	start	at	position	i?	

Y[i,j] with X ® Y forms X[i,j]

Y[i,j] and Z[j,k] with X ® Y Z form X[i,k]

Y Z

X

An	Example

0 1 2 3 4 5
critics write reviews with computers

NNS VBP NNS IN NNS

NNS[0,1] VBP[1,2] NNS[2,3] IN[3,4] NNS[3,4] NP[0,1] NP[2,3] NP[4,5]

NP NP NP

VP[1,2] S[0,2]

VP

PP[3,5]

PP

VP[1,3]

VP

ROOT[0,2]

S
ROOT

S
ROOT

S[0,3] VP[1,5]

VP

NP[2,5]

NP

ROOT[0,3] S[0,5] ROOT[0,5]

S

ROOT

Empty	Elements
§ Sometimes	we	want	to	posit	nodes	in	a	parse	tree	that	don’t	

contain	any	pronounced	words:

§ These	are	easy	to	add	to	a	agenda-based	parser!
§ For	each	position	i,	add	the	“word”	edge	e[i,i]
§ Add	rules	like	NP	® e to	the	grammar
§ That’s	it!

0 1 2 3 4 5
I like to parse empties

e e e e e e

NP VP

I want you to parse this sentence

I want [] to parse this sentence

UCS	/	A*

§ With	weighted	edges,	order	matters
§ Must	expand	optimal	parse	from	

bottom	up	(subparses	first)
§ CKY	does	this	by	processing	smaller	

spans	before	larger	ones
§ UCS	pops	items	off	the	agenda	in	

order	of	decreasing	Viterbi	score
§ A*	search	also	well	defined

§ You	can	also	speed	up	the	search	
without	sacrificing	optimality
§ Can	select	which	items	to	process	first
§ Can	do	with	any	“figure	of	merit”	

[Charniak	98]
§ If	your	figure-of-merit	is	a	valid	A*	

heuristic,	no	loss	of	optimiality	[Klein	
and	Manning	03]

X

n0 i j

(Speech)	Lattices
§ There	was	nothing	magical	about	words	spanning	exactly	

one	position.
§ When	working	with	speech,	we	generally	don’t	know	

how	many	words	there	are,	or	where	they	break.
§ We	can	represent	the	possibilities	as	a	lattice	and	parse	

these	just	as	easily.

I
awe

of

van

eyes

saw
a

‘ve

an

Ivan

Unsupervised	Tagging

Unsupervised	Tagging?
§ AKA	part-of-speech	induction
§ Task:

§ Raw	sentences	in
§ Tagged	sentences	out

§ Obvious	thing	to	do:
§ Start	with	a	(mostly)	uniform	HMM
§ Run	EM
§ Inspect	results

EM	for	HMMs:	Process
§ Alternate	between	recomputing	distributions	over	hidden	variables	(the	

tags)	and	reestimating	parameters
§ Crucial	step:	we	want	to	tally	up	how	many	(fractional)	counts	of	each	

kind	of	transition	and	emission	we	have	under	current	params:

§ Same	quantities	we	needed	to	train	a	CRF!

EM	for	HMMs:	Quantities
§ Total	path	values	(correspond	to	probabilities	here):

The	State	Lattice	/	Trellis

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

START Fed raises interest rates END

EM	for	HMMs:	Process

§ From	these	quantities,	can	compute	expected	transitions:

§ And	emissions:

Merialdo:	Setup
§ Some	(discouraging)	experiments	[Merialdo	94]

§ Setup:
§ You	know	the	set	of	allowable	tags	for	each	word
§ Fix	k	training	examples	to	their	true	labels

§ Learn	P(w|t)	on	these	examples
§ Learn	P(t|t-1,t-2)	on	these	examples

§ On	n	examples,	re-estimate	with	EM

§ Note:	we	know	allowed	tags	but	not	frequencies

Merialdo:	Results

Distributional	Clustering

president the __ of
president the __ said
governor the __ of
governor the __ appointed
said sources __ ¨
said president __ that
reported sources __ ¨

president
governor

said
reported

the
a

¨ the president said that the downturn was over ¨

[Finch and Chater 92, Shuetze 93, many others]

Distributional	Clustering
§ Three	main	variants	on	the	same	idea:

§ Pairwise	similarities	and	heuristic	clustering
§ E.g.	[Finch	and	Chater	92]
§ Produces	dendrograms

§ Vector	space	methods
§ E.g.	[Shuetze	93]
§ Models	of	ambiguity

§ Probabilistic	methods
§ Various	formulations,	e.g.	[Lee	and	Pereira	99]

Nearest	Neighbors

Dendrograms																							_

Dendrograms																							_

